Chinese  |  English

CH

R&D Teamhome >> About Us >> R&D Team >> R&D Backbones

Xiaoming Li(Research Associate)

Xiaoming Li, master and research associate, was born in Shanxi Province in 1986.

Education and work experience:
2005-2009, North University of China, Polymer Materials Science, Bachelor
2010-2013, Lanzhou University of Technology, Material Science, Master
2013-2017,Institute of Coal Chemistry, CAS,Research Assistant
2017-Present,Institute of Coal Chemistry, CAS, Research Associate

Research Fields: 
Graphene functional materials include graphene functional slurry, graphene modified polymer and graphene thermal management materials.

Email: lixiaoming@sxicc.ac.cn

Papers:
[1] Hua C. J., Li X. M., Shen L. J., et al. Influence of co-solvent hydroxyl group number on properties of water-based conductive carbon pastes[J]. Particuology. 2017,33:35-41.
[2] Tong Yun-Xiao, Li Xiao-Ming, Xie Li-Jing, et al. Nitrogen-doped hierarchical porous carbon derived from block copolymer for supercapacitor[J]. Energy Storage Materials. 2016,3:140-148.
[3] Gao Y. D., Zhang Y. Y., Zhang Y., et al. Three-dimensional paper-like graphene framework with highly orientated laminar structure as binder-free supercapacitor electrode[J]. Journal of Energy Chemistry. 2016,25(1):49-54.
[4] Su F. Y., Xie L. J., Sun G. H., et al. Theoretical research progress on the use of graphene in different electrochemical processes[J]. New Carbon Materials. 2016,31(4):363-377.
[5] Y. Wang, Kong L. B., Li X. M., et al. Mesoporous carbons for supercapacitors obtained by the pyrolysis of block copolymers%B New Carbon Materials[J]. 2016,4%N 30:302-209.
[6] Xie L. J., Sun G. H., Xie L. F., et al. A high energy density asymmetric supercapacitor based on a CoNi-layered double hydroxide and activated carbon[J]. New Carbon Materials. 2016,31(1):37-45.
[7] Xie L. J., Sun G. H., Su F. Y., et al. Hierarchical porous carbon microtubes derived from willow catkins for supercapacitor applications[J]. Journal of Materials Chemistry A. 2016,4(5):1637-1646.
[8] Gao Y. D., Kong Q. Q., Liu Z., et al. Graphene oxide aerogels constructed using large or small graphene oxide with different electrical, mechanical and adsorbent properties[J]. RSC Advances. 2016,6(12):9851-9856.
[9] Lei H., Liu Z., He C., et al. Graphene enhanced low-density polyethylene by pretreatment and melt compounding[J]. RSC Advances. 2016,6(103):101492-101500.
[10] Xie L. J., Su F. Y., Xie L. F., et al. Self-Assembled 3D Graphene-Based Aerogel with Co3O4 Nanoparticles as High-Performance Asymmetric Supercapacitor Electrode[J]. Chemsuschem. 2015,8(17):2917-2926.
[11] Liu Zhuo, Kong Qing-Qiang, Chen Cheng-Meng, et al. From two-dimensional to one-dimensional structures: SiC nano-whiskers derived from graphene via a catalyst-free carbothermal reaction[J]. RSC Advances. 2015,5(8):5946-5950.
[12] Liu Y. Z., Chen C. M., Li Y. F., et al. Crumpled reduced graphene oxide by flame-induced reduction of graphite oxide for supercapacitive energy storage[J]. Journal of Materials Chemistry A. 2014,2(16):5730-5737.
[13] Kong L. B., Li X. M., Liu M. C., et al. A hydrothermal process for the fabrication of nickel foam based NiO and Co3O4 nanostructures with excellent properties for electrochemical capacitors[J]. Advances in Energy Science and Technology, Pts 1-4. 2013,291-294:786-790.
[14] Liu M. C., Kang L., Kong L. B., et al. Facile synthesis of NiMoO4 center dot xH(2)O nanorods as a positive electrode material for supercapacitors[J]. RSC Advances. 2013,3(18):6472-6478.
[15] Liu M. C., Kong L. B., Lu C., et al. Design and synthesis of CoMoO4-NiMoO4 center dot xH(2)O bundles with improved electrochemical properties for supercapacitors[J]. Journal of Materials Chemistry A. 2013,1(4):1380-1387.
[16] Liu Mao. Cheng., Kong L. B., Lu C., et al. Waste paper based activated carbon monolith as electrode materials for high performance electric double-layer capacitors[J]. RSC Advances. 2012,2(5):1890-1896.
[17] Liu M. C., Kong L. B., Lu C., et al. A Sol-Gel Process for the Synthesis of NiCo2O4 Having Improved Specific Capacitance and Cycle Stability for Electrochemical Capacitors[J]. Journal of the Electrochemical Society. 2012,159(8):A1262-A1266.
[18] Liu M. C., Kong L. B., Lu C., et al. A Sol-Gel Process for Fabrication of NiO/NiCo2O4/Co3O4 Composite with Improved Electrochemical Behavior for Electrochemical Capacitors[J]. ACS Applied Materials & Interfaces. 2012,4(9):4631-4636.
[19] Liu M. C., Kong L. B., Ma X. J., et al. Hydrothermal process for the fabrication of CoMoO4 center dot 0.9H(2)O nanorods with excellent electrochemical behavior[J]. New Journal of Chemistry. 2012,36(9):1713-1716.
[20] Kong L. B., Deng L., Li X. M., et al. Fabrication of flower-like Ni-3(NO3)(2)(OH)(4) and their electrochemical properties evaluation[J]. Materials Research Bulletin. 2012,47(7):1641-1647.

R&D Team  

Xiaoming Li(Research Associate)

Xiaoming Li, master and research associate, was born in Shanxi Province in 1986.

Education and work experience:
2005-2009, North University of China, Polymer Materials Science, Bachelor
2010-2013, Lanzhou University of Technology, Material Science, Master
2013-2017,Institute of Coal Chemistry, CAS,Research Assistant
2017-Present,Institute of Coal Chemistry, CAS, Research Associate

Research Fields: 
Graphene functional materials include graphene functional slurry, graphene modified polymer and graphene thermal management materials.

Email: lixiaoming@sxicc.ac.cn

Papers:
[1] Hua C. J., Li X. M., Shen L. J., et al. Influence of co-solvent hydroxyl group number on properties of water-based conductive carbon pastes[J]. Particuology. 2017,33:35-41.
[2] Tong Yun-Xiao, Li Xiao-Ming, Xie Li-Jing, et al. Nitrogen-doped hierarchical porous carbon derived from block copolymer for supercapacitor[J]. Energy Storage Materials. 2016,3:140-148.
[3] Gao Y. D., Zhang Y. Y., Zhang Y., et al. Three-dimensional paper-like graphene framework with highly orientated laminar structure as binder-free supercapacitor electrode[J]. Journal of Energy Chemistry. 2016,25(1):49-54.
[4] Su F. Y., Xie L. J., Sun G. H., et al. Theoretical research progress on the use of graphene in different electrochemical processes[J]. New Carbon Materials. 2016,31(4):363-377.
[5] Y. Wang, Kong L. B., Li X. M., et al. Mesoporous carbons for supercapacitors obtained by the pyrolysis of block copolymers%B New Carbon Materials[J]. 2016,4%N 30:302-209.
[6] Xie L. J., Sun G. H., Xie L. F., et al. A high energy density asymmetric supercapacitor based on a CoNi-layered double hydroxide and activated carbon[J]. New Carbon Materials. 2016,31(1):37-45.
[7] Xie L. J., Sun G. H., Su F. Y., et al. Hierarchical porous carbon microtubes derived from willow catkins for supercapacitor applications[J]. Journal of Materials Chemistry A. 2016,4(5):1637-1646.
[8] Gao Y. D., Kong Q. Q., Liu Z., et al. Graphene oxide aerogels constructed using large or small graphene oxide with different electrical, mechanical and adsorbent properties[J]. RSC Advances. 2016,6(12):9851-9856.
[9] Lei H., Liu Z., He C., et al. Graphene enhanced low-density polyethylene by pretreatment and melt compounding[J]. RSC Advances. 2016,6(103):101492-101500.
[10] Xie L. J., Su F. Y., Xie L. F., et al. Self-Assembled 3D Graphene-Based Aerogel with Co3O4 Nanoparticles as High-Performance Asymmetric Supercapacitor Electrode[J]. Chemsuschem. 2015,8(17):2917-2926.
[11] Liu Zhuo, Kong Qing-Qiang, Chen Cheng-Meng, et al. From two-dimensional to one-dimensional structures: SiC nano-whiskers derived from graphene via a catalyst-free carbothermal reaction[J]. RSC Advances. 2015,5(8):5946-5950.
[12] Liu Y. Z., Chen C. M., Li Y. F., et al. Crumpled reduced graphene oxide by flame-induced reduction of graphite oxide for supercapacitive energy storage[J]. Journal of Materials Chemistry A. 2014,2(16):5730-5737.
[13] Kong L. B., Li X. M., Liu M. C., et al. A hydrothermal process for the fabrication of nickel foam based NiO and Co3O4 nanostructures with excellent properties for electrochemical capacitors[J]. Advances in Energy Science and Technology, Pts 1-4. 2013,291-294:786-790.
[14] Liu M. C., Kang L., Kong L. B., et al. Facile synthesis of NiMoO4 center dot xH(2)O nanorods as a positive electrode material for supercapacitors[J]. RSC Advances. 2013,3(18):6472-6478.
[15] Liu M. C., Kong L. B., Lu C., et al. Design and synthesis of CoMoO4-NiMoO4 center dot xH(2)O bundles with improved electrochemical properties for supercapacitors[J]. Journal of Materials Chemistry A. 2013,1(4):1380-1387.
[16] Liu Mao. Cheng., Kong L. B., Lu C., et al. Waste paper based activated carbon monolith as electrode materials for high performance electric double-layer capacitors[J]. RSC Advances. 2012,2(5):1890-1896.
[17] Liu M. C., Kong L. B., Lu C., et al. A Sol-Gel Process for the Synthesis of NiCo2O4 Having Improved Specific Capacitance and Cycle Stability for Electrochemical Capacitors[J]. Journal of the Electrochemical Society. 2012,159(8):A1262-A1266.
[18] Liu M. C., Kong L. B., Lu C., et al. A Sol-Gel Process for Fabrication of NiO/NiCo2O4/Co3O4 Composite with Improved Electrochemical Behavior for Electrochemical Capacitors[J]. ACS Applied Materials & Interfaces. 2012,4(9):4631-4636.
[19] Liu M. C., Kong L. B., Ma X. J., et al. Hydrothermal process for the fabrication of CoMoO4 center dot 0.9H(2)O nanorods with excellent electrochemical behavior[J]. New Journal of Chemistry. 2012,36(9):1713-1716.
[20] Kong L. B., Deng L., Li X. M., et al. Fabrication of flower-like Ni-3(NO3)(2)(OH)(4) and their electrochemical properties evaluation[J]. Materials Research Bulletin. 2012,47(7):1641-1647.
LAST:Lijing Xie(Associate Professor)
NEXT:Xianhong Huang(Research Associate)

CONTACT US


Sales Manager:

0086+18835170493(Miss. Liu)

18835170493@163.com

WeChat:18835170493


Technical support:

0086+13934640625(Miss. Guo)

graphene@sxicc.ac.cn

WeChat:13934640625


Tel/Fax:0086+03514049061
Post Code:030001

Adress:27 South Taoyuan Road, Taiyuan, Shanxi, P.R.China

Website:http://709.sxicc.ac.cn

0351-4049061

版权所有:中国科学院山西煤炭化学研究所(ICC-CAS)
备案号:晋备ICP备1000255478号-3